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Abstract. We investigate Feynman diagrams which are calculable in terms of generalized one-loop func-
tions, and explore how the presence or absence of transcendentals in their counterterms reflects the entan-
glement of link diagrams constructed from them and explains unexpected relations between them.

1 Introduction

Recently, a connection between knot theory and renor-
malization theory emerged. It initiated new results in field
theory and number theory, via the identification of knots
extracted from the topology of Feynman diagrams, with
transcendentals found in their overall divergent contribu-
tions [1–11]. The idea explored in these papers can be de-
scribed as follows. We consider an overall divergent Feyn-
man diagram. It is well known that after proper renor-
malization of its subdivergences, its overall divergence will
depend on external parameters like masses and momenta
only in a trivial (polynomial) manner. It further depends
on the spin representation of the involved particles, and
on the topology of the diagram in a non-trivial manner.
With the spin of the particles specified, one can thus ex-
pect to find topological information in the values of the
overall divergences. We will now shortly summarize the
results achieved so far, and explain how the present paper
fits into this context.

The simplest topologies are provided by ladder dia-
grams. In [1,12], the reader will find that such diagrams
provide only rational contributions in their overall diver-
gences. Correspondingly, these diagrams are knot-free,
when mapped to link diagrams. This mapping is achieved
by consideration of the momentum flow in the diagram [1,
3]. Each closed loop momentum contributes a component
of a link diagram. The mutual entanglement of these com-
ponents results from the resolution of vertices into over-
and undercrossings, and from the topology of the diagram.

Using this approach, it is shown in [1] that the tran-
scendentals ζ(2l−3) (odd zetas) appear in l-loop Feynman
diagrams which deliver (2, 2l − 3) torus knots. These are
the simplest positive knots, and they are generated by
Feynman diagrams which are distinguished from the lad-
der topology by only one propagator, which crosses all the
other rungs.

Up to the five-loop level, only these knots appear, and
correspondingly, all transcendentals in counterterms are of
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odd zeta type. In [3], it is demonstrated that a certain six-
loop graph generates a different knot, with eight crossings.
This is a success for knot theory: precisely such graphs
deliver for the first time a new transcendental, a double
sum of weight eight, which was first observed by David
Broadhurst [13].

Such multiple sums are known in the literature as Eu-
ler/Zagier sums [2,8,11,14]. The restricted class of non-
alternating sums is known as multiple zeta values (MZVs)
[11].

In [4], these lines of thinking were extended to the
seven-loop level, and the scheme independent contribu-
tion to the seven-loop β-function of φ4 theory was calcu-
lated. This involved only diagrams free of subdivergences.
Again, the match between knots and transcendentals was
striking, and culminated in the identification of the first
irreducible triple sum of weight eleven with the unique
positive four-braid knot.

In [2], Broadhurst enumerates alternating sums (Eu-
ler/Zagier sums), inspired by knot and field theory. The
results inform number theory, by answering the question
how many of such transcendentals are independent over
the rational numbers. Further results appeared in [8].

In [6], we use the ε-expansion of critical exponents
to enlargen our knot-to-number dictionary. This implic-
itly incorporates graphs with subdivergences via large N
methods.

In [7], we identify whole classes of positive knots with
MZVs up to 15 crossings, and conjecture the enumeration
of irreducible MZVs. This conjecture is further confirmed
in [11].

In [9], an explanation for the connection between knot
theory and renormalization theory is given, by indicat-
ing how the overall divergences of Feynman diagrams (re-
stricted to diagrams free of subdivergences) provide a
weight system, and thus are related to knot invariants of
finite type. The investigations are restricted to the study
of graphs without subdivergences.

In [10], examples at the four-and five-loop level confirm
these findings.



758 D. Kreimer: On knots in subdivergent diagrams

Γ

Σ

Π

{
{

{

n

n

n-1

Fig. 1. Basic definitions for one-loop functions Γ [1], Σ[1], Π [1],
on the lhs, and their generalization to n-loop functions Γ [n],
Σ[n], Π [n], on the rhs. Dashed lines indicate the massless spin-0
boson, while the solid line represents a massless fermion

When one carefully studies the above papers, one no-
tices that they barely discuss graphs with subdivergences.
In this paper, we want to close the gap. It is the purpose
of this paper to compare the UV-divergent behaviour of
Feynman graphs which have subdivergences with the be-
haviour of link and knot diagrams associated to these di-
agrams.

In the before-mentioned papers the topologies of the
diagrams were complicated, but in most cases free of sub-
divergences. Now, we focus on fairly simple topologies with
subdivergences. From [1], we know one result concerning
graphs with subdivergences: that simple topologies, whose
forest structure is strictly nested or purely overlapping,
provide only rational numbers in their overall divergences.
These results are confirmed by independent methods in
[12]. Here, we generalize such cases by dressing internal
propagators with simple rainbow diagrams which gener-
ate disjoint subdivergences.

We consider in this paper Feynman graphs which are
calculable in terms of G-functions [15]. As a specific exam-
ple we consider vertex functions at zero momentum trans-
fer (zmt) in Yukawa theory, with fermions coupling to a
massless scalar field. We are thus restricted to the study of
nested divergences as a starting point. From the results in
[1], and from the general structure of renormalization the-
ory, we know that the entanglement of subdivergences for
the overlapping case follows a similar pattern, only that
one has to sum over all maximal forests of these overlap-
ping divergences. Thus, the combinations of G-functions
generated by overlapping divergences is ultimately a sum
of the combinations which arise from nested divergences,
in full accord with the forest formula [16]. This was the
motivation to choose vertex-functions as an appropriate
testing ground to explore the connection between renor-
malization and link diagrams in the context of graphs with
subdivergences.

The sole purpose of these vertex functions is to serve as
a visualization for the combinations of G-functions which
we want to consider. The only transcendentals which ap-
pear in G-functions stem from the ζ-function evaluated at

integer argument

Γ (1 − z) = eγz exp


 ∞∑

j=2

ζ(j)zj

j


 . (1)

The only knots we expect to see are (2, q) torus knots,
according to the identification of ζ(q) with these knots in
[1,3,4].

2 Definitions

Our input is a set of generalized one-loop functions. We
define1

G(j1, j2)[q2]

≡
∫

dDk

N

1
[(k + q)2]1+j1ε[k2]1+j2ε

:= [q2]−(j1+j2+1)ε (2)

× Γ [1+(j1+j2+1)ε]Γ [1−(j1+1)ε]Γ [(1−(j2+1)ε)]
((j1+j2+1)ε)Γ [(2−(j1+j2+2)ε)]Γ [(1+j1ε)]Γ [(1+j2ε)] ,

where D = 4−2ε and the last equation fixes the normaliza-
tion. In this notation, the one-loop radiative corrections
of the vertex, the fermion and the scalar propagator in
massless Yukawa theory become

Γ [1](q) = G(0, 0)[q2], (3)

Σ[1](q) = −1
2
q/G(0, 0)[q2], (4)

Π [1](q) = 2q2G(0, 0)[q2], (5)

for the (one-loop) vertex-correction at zmt, Γ [1]; the fer-
mion self-energy, Σ[1]; and the self-energy of the scalar
boson, Π [1]. These corrections refer to the graphs given in
Fig. 1 on the lhs. We can easily generalize this to n-loop
ladder corrections at the vertex Γ [n], and to n-loop rain-
bow corrections for the self-energy of the fermion prop-
agator, Σ[n]. For the scalar boson, we restrict ourselves
to dressings of one internal fermion line, which gives us a
function Π [n]. In Fig. 1 we define these functions diagram-
matically on the rhs, and analytically in (6,7,8) below.

We denote such diagrams as simple. Such simple to-
pologies deliver rational counterterms, after we absorb
the subdivergences by counterterms [1,12]. In short, their
overall divergence provides a Laurent series in (D − 4)
which has coefficients in Q, the rational numbers.

Now these functions are the building blocks for the
Feynman diagrams to be considered in this paper. Ac-
cording to the results in [1] we expect a connection to
knot theory to appear after renormalization of subdiver-
gences. This is a natural constraint. When the dependence
on external parameters is removed via renormalization of
subdivergences we shall expect to find an overall diver-
gence which solely reflects the topology of the diagram
under consideration.

1 We work in the MS-scheme, and thus omit irrelevant fac-
tors of log(4π) and γE throughout the paper
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The functions defined in Fig. 1 can be defined analyt-
ically by the following iterations

Γ [n](q) :=
∫

dDk Γ [n−1](k)
1
k/

1
k/

1
(k + q)2

, (6)

Σ[n](q) :=
∫

dDk
1
k/

Σ[n−1](k)
1
k/

1
(k + q)2

, (7)

Π [n](q) := Tr

(∫
dDk

1
k/

Σ[n−1](k)
1
k/

1
k/ + q/

)
, (8)

Γ [0](k) := 1, Σ[0](k) := k/. (9)

Using

Pn ≡ Pn(ε) :=
n−1∏
i:=0

G(0, i)[q2 = 1], (10)

one obtains by a standard calculation the following ex-
plicit expressions

Γ [n](q) = [q2]−nεPn, (11)

Σ[n](q) = (−1
2
)nq/[q2]−nεPn, (12)

Π [n](q) = 2(−1
2
)n−1q2[q2]−nεPn. (13)

These Green functions are unrenormalized. For n > 1,
they contain subdivergences. To find their overall coun-
terterms we have to renormalize these subdivergences first.
For n > 1 we incorporate the subtraction of subdiver-
gences as follows:

Γ [n] → Γ̄ [n] := Γ [n] −
n−1∑
i:=1

Z
[i]
Γ Γ [n−i], (14)

Z
[n]
Γ := 〈Γ̄ [n]〉, Z

[1]
Γ ≡ 〈Γ [1]〉, (15)

Σ[n] → Σ̄[n] := Σ[n] −
n−1∑
i:=1

Z
[i]
Σ Σ[n−i], (16)

Z
[n]
Σ := 〈Σ̄[n]/q/〉, Z

[1]
Σ ≡ 〈Σ[1]/q/〉, (17)

Π [n] → Π̄ [n] := Π [n] −
n−1∑
i:=1

Z
[i]
Σ Π [n−i], (18)

Z
[n]
Π := 〈Π̄ [n]/q2〉, Z

[1]
Π ≡ 〈Π [1]/q2〉. (19)

In angle brackets 〈. . .〉 we project onto the proper pole
part of the Laurent series in ε and evaluate at q2 = 1. The
renormalization of subdivergences is achieved in the MS-
scheme. We introduced renormalization Z-factors Z

[n]
Γ,Σ,Π

taylored for our purposes. They remove the overall diver-
gence at the indicated loop order in our simple Green func-
tions. These Z-factores are totally expressible in terms of
the Pn functions, for example

Z
[3]
Γ = 〈P3 −

Z
[1]
Γ︷︸︸︷

〈P1〉 P2 −
Z

[2]
Γ︷ ︸︸ ︷

〈P2 − 〈P1〉P1〉 P1〉. (20)

Renormalized Green functions (usually referred to by bold
letters) are obtained by subtracting the remaining overall

= Z
+

Σ

Σ

Π

ΓΓ

Fig. 2. Feynman diagrams are generated by the Schwinger-
Dyson equation for the vertex as indicated in the figure. We
allow for the selfenergy insertions Σ, Π defined in the text

divergences

Υ[n] := Ῡ [n] − 〈Ῡ [n]〉, (21)
Υ ∈ {Γ, Σ, Π}.

To go from self-energies to propagators, we use

∆F :=
i

q2 − Π
, (22)

SF :=
i

q/ − Σ
, (23)

Π :=
∞∑

n:=1

Π [n], (24)

Σ :=
∞∑

n:=1

Σ[n]. (25)

Quite often we only want to use a terminating geometric
series for self-energies with rainbows of a fixed loop num-
ber i, expanded to a series of degree k, so that we define

∆
[i,k]
F (q) :=

i

q2

[
Π [i](q)

q2

]k

, (26)

S
[i,k]
F (q) :=

i

q/

[
Σ[i](q)

q/

]k

. (27)

The corresponding renormalized quantities ∆F
[i,k] and

SF
[i,k] are obtained by replacing the self-energies Σ[i], Π [i]

by the corresponding renormalized Σ[i],Π[i].
Having defined all these quantities, we now consider

the diagrams of Fig. 2. Their generic structure is

Γ ∼
∫

[S2
F ∆F ]r. (28)

They come from dressing internal propagators and it-
erating the vertex as given by the reduced Schwinger Dy-
son equation of Fig. 2. Propagators dressed with disjoint
subdivergences are obtained from expanding the one-par-
ticle irreducible functions defined above in a power series
in the selfenergies, using (26,27).

We investigate the contribution of the so-iterated ver-
tex to the MS Z-factor. Especially, we are interested to
what extent transcendentals remain after the renormaliza-
tion of subdivergences. So, in contrast to the simple case,
we expect coefficients to be 6∈ Q. Especially, we expect to
see the transcendentals ζ(2l + 1), generated from (1) and
corresponding to the (2, 2l + 1) torus knots, familiar from
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Fig. 3. The most basic dressings are topologically equivalent
to ladder diagrams. Three selfenergy insertions are needed to
get a topology different from a ladder topology. The topology
can be encoded as a (Gauss-)code, by reading off sequences like
{1, 1, 2, 2, 3, 3} for the case of three disjoint subdivergences, and
{1, 2, 3, 3, 2, 1} in the four-loop ladder case

previous results [1,3,4]. We once more stress that for the
case of simple topologies, with undressed internal propa-
gators as in Fig. 1 on the rhs, all transcendentals vanish
after the renormalization of proper subdivergences.

The most basic example appears when we start to dress
Γ [1] with one-loop self-energies Σ[1] or Π [1]. As long as
there are only one or two such dressings, the topology of
the resulting Feynman diagrams is still similar to a ladder
topology, as Fig. 3 exhibits. We thus expect trancenden-
tals to cancel, as we claim that there appearance reflects
a change from the ladder topology. Indeed, the next sec-
tion will reveal that transcendentals only remain in case
of more than two disjoint subdivergences.

3 An elementary example

We start with the consideration of Feynman graphs before
the subtraction of subdivergences, with n one-loop bub-
bles at the fermion line and m one-loop insertions at the
boson line, for different n and m, but with n+m = l fixed.

To compare cases with a varying number of fermion- or
boson self-energies, from now on we normalize Green func-
tions by removing the factors of 2 and (−1/2) in (12,13)
for the selfenergies. In so doing, we employ the fact that
Z

[n]
Σ and Z

[n]
Π are related by such simple factors, accord-

ing to (12,13). After such a normalization (which removes
the burden to list superflous factors of 2 in our tables) we
have Z

[n]
Γ = Z

[n]
Σ = Z

[n]
Π =: Z [n]. This normalization is

included in all the results in the tables and adopted in all
what follows.

We will consider a function Γ (n, m) defined as

Γ (n, m)(q) :=
∫

dDk
1
k/

S
[1,n]
F (k) ∆

[1,m]
F (k + q) (29)

∆F
(1,m)∆F
(1,m)

SF
(1,n)SF
(1,n)

Fig. 4. Γ̄ (n, m)

= [G(0, 0)]n+m G(0, n + m)[q2]−(n+m+1)ε.

Renormalizing the subdivergences delivers

Γ̄ (n, m)(q)

:=
∫

dDk
1
k/

SF
[1,n](k) ∆F

[1,m](k + q) (30)

=
n+m∑
i=0

(
n + m

i

)
G(0, 0)i[−〈G(0, 0)〉]n+m−i

×G(0, i)[q2]−(i+1)ε . (31)

The corresponding Feynman graphs are given in Fig. 4.
We easily evaluate them using (12,13). We are not so much
interested in an all order result, but rather compare the
results before and after subtraction of subdivergences.

Table 1 shows that the graphs in general differ for dif-
ferent n, m. A few words about the conventions in the
tables are in order. Only divergent parts of Green func-
tions are given. The notation Γ̄ refers to Green func-
tions with subtracted subdivergences. Thus, all the de-
pendence on q2 has dropped out. Only in Table 1 we
give for comparison a few cases for unsubtracted Green-
functions, in the first six entries. For these entries, we
have set q2 = 1. Now let us consider Table 1. While
still Γ (1, 1) = Γ (2, 0), we have Γ (2, 1) 6= Γ (3, 0) and
Γ (5, 1) 6= Γ (4, 2), cf. Table 1.2 Further calculations con-
firm that in general Γ (n, m) 6= Γ (n′, m′) for n + m ≥ 3,
where we always have n + m = n′ + m′.

Now consider the graph after subtraction of subdiver-
gences. A symmetry is emerging. The results only depend
on the sum l = n + m. Table 1 shows results up to the
eleven loop level, given as Γ (l). The pattern indicated in
the table continues to higher loop levels, as checked by sys-
tematic calculations. Note that the results in Table 1 are
given in a normalization which makes the observed sym-
metry most obvious. In this normalization we simply have
dropped irrelevant factors of 2 or 1/2 which come from
the calculation of selfenergies according to (12,13,26,27).
As a result our Feynman diagrams now solely indicate the
nesting of G-functions. With this normalization, all the
basic one-loop functions have the same divergence.

With these conventions in place, the explicit formulae
for 〈Γ (2, 1)〉 = 〈Γ (3, 0)〉 are as follows:

〈Γ (2, 1)〉 = 〈G(0, 0)3 G(2, 1) − G(0, 0)2 G(2, 0)Z [1]

−2G(0, 0)2 G(1, 1)Z [1] + 3G(0, 0) G(1, 0)[Z [1]]2

2 In all the tables, expressions like a/b ε(−r) shall be read as
a
b

1
εr



D. Kreimer: On knots in subdivergent diagrams 761

Table 1. 〈Γ (n, m)〉 for various values of (n1, n2). After the renormalization of subdivergences we find that the results for
〈Γ (n, m)〉 depend only on the sum l = n + m, which we give as 〈Γ (l)〉. The transcendental ζ(l) appears at l + 1 loops

Γ (2, 0) := ε(−1)(−1/2 ζ(2) + 44/3) + 8/3 ε(−2) + 1/3 ε(−3)

Γ (1, 1) := ε(−1)(−1/2 ζ(2) + 44/3) + 8/3 ε(−2) + 1/3 ε(−3)

Γ (3, 0) := ε(−1)(−59/6 ζ(3) − 11/2 ζ(2) + 475/4) + ε(−2)(−1/2 ζ(2) + 79/4) + 11/4 ε(−3) + 1/4 ε(−4)

Γ (2, 1) := ε(−1)(−83/6 ζ(3) − 11/2 ζ(2) + 475/4) + ε(−2)(−1/2 ζ(2) + 79/4) + 11/4 ε(−3) + 1/4 ε(−4)

Γ (5, 1) := ε(−1)(−113767/42 ζ(6) − 155308/7 ζ(5) + 1087/8 ζ(4) ζ(2) − 66307/7 ζ(4) + 299209/126 ζ(3)2 + 5470/3 ζ(3) ζ(2) −
437600/7 ζ(3)− 49/48 ζ(2)3 +427/2 ζ(2)2 − 10608 ζ(2)+1451904/7)+ ε(−2)(−38827/35 ζ(5)− 5435/7 ζ(4)+547/6 ζ(3) ζ(2)−
133468/21 ζ(3)+35/2 ζ(2)2 −1200 ζ(2)+177792/7)+ ε(−3)(−1087/28 ζ(4)−10940/21 ζ(3)+7/8 ζ(2)2 −122 ζ(2)+21216/7)+
ε(−4)(−547/21 ζ(3) − 10 ζ(2) + 2400/7) + ε(−5)(−1/2 ζ(2) + 244/7) + 20/7 ε(−6) + 1/7 ε(−7)

Γ (4, 2) := ε(−1)(−132667/42 ζ(6) − 181348/7 ζ(5) + 1339/8 ζ(4) ζ(2) − 81679/7 ζ(4) + 452929/126 ζ(3)2 + 6730/3 ζ(3) ζ(2) −
538400/7 ζ(3)− 49/48 ζ(2)3 +427/2 ζ(2)2 − 10608 ζ(2)+1451904/7)+ ε(−2)(−45337/35 ζ(5)− 6695/7 ζ(4)+673/6 ζ(3) ζ(2)−
164212/21 ζ(3)+35/2 ζ(2)2 −1200 ζ(2)+177792/7)+ ε(−3)(−1339/28 ζ(4)−13460/21 ζ(3)+7/8 ζ(2)2 −122 ζ(2)+21216/7)+
ε(−4)(−673/21 ζ(3) − 10 ζ(2) + 2400/7) + ε(−5)(−1/2 ζ(2) + 244/7) + 20/7 ε(−6) + 1/7 ε(−7)

Γ (1) := 1/2 ε(−1) − 1/2 ε(−2)

Γ (2) := −1/3 ε(−1) − 1/3 ε(−2) + 1/3 ε(−3)

Γ (3) := ε(−1)(−1/2 ζ(3) + 1/4) + 1/4 ε(−2) + 1/4 ε(−3) − 1/4 ε(−4)

Γ (4) := ε(−1)(3/5 ζ(4) − 2/5 ζ(3) − 1/5) + ε(−2)(2/5 ζ(3) − 1/5) − 1/5 ε(−3) − 1/5 ε(−4) + 1/5 ε(−5)

Γ (5) := ε(−1)(− ζ(5) + 1/2 ζ(4) + 1/3 ζ(3) + 1/6) + ε(−2)(−1/2 ζ(4) + 1/3 ζ(3) + 1/6) + ε(−3)(−1/3 ζ(3) + 1/6) + 1/6 ε(−4) +
1/6 ε(−5) − 1/6 ε(−6)

Γ (7) := ε(−1)(−9/4 ζ(7) + 5/4 ζ(6) + 3/4 ζ(5) − 3/4 ζ(4) ζ(3) + 3/8 ζ(4) + 1/4 ζ(3)2 + 1/4 ζ(3) + 1/8) + ε(−2)(−5/4 ζ(6) +
3/4 ζ(5)+3/8 ζ(4)− 1/4 ζ(3)2 +1/4 ζ(3)+1/8)+ ε(−3)(−3/4 ζ(5)+3/8 ζ(4)+1/4 ζ(3)+1/8)+ ε(−4)(−3/8 ζ(4)+1/4 ζ(3)+
1/8) + ε(−5)(−1/4 ζ(3) + 1/8) + 1/8 ε(−6) + 1/8 ε(−7) − 1/8 ε(−8)

Γ (10) := ε(−1)(102/11 ζ(10) − 170/33 ζ(9) − 63/22 ζ(8) + 36/11 ζ(7) ζ(3) − 18/11 ζ(7) + 30/11 ζ(6) ζ(4) − 20/11 ζ(6) ζ(3) −
10/11 ζ(6) + 18/11 ζ(5)2 − 18/11 ζ(5) ζ(4) − 12/11 ζ(5) ζ(3) − 6/11 ζ(5) − 9/22 ζ(4)2 + 6/11 ζ(4) ζ(3)2 − 6/11 ζ(4) ζ(3) −
3/11 ζ(4) − 4/33 ζ(3)3 − 2/11 ζ(3)2 − 2/11 ζ(3) − 1/11) + ε(−2)(170/33 ζ(9) − 63/22 ζ(8) − 18/11 ζ(7) + 20/11 ζ(6) ζ(3) −
10/11 ζ(6)+18/11 ζ(5) ζ(4)− 12/11 ζ(5) ζ(3)− 6/11 ζ(5)− 9/22 ζ(4)2 − 6/11 ζ(4) ζ(3)− 3/11 ζ(4)+4/33 ζ(3)3 − 2/11 ζ(3)2 −
2/11 ζ(3) − 1/11) + ε(−3)(63/22 ζ(8) − 18/11 ζ(7) − 10/11 ζ(6) + 12/11 ζ(5) ζ(3) − 6/11 ζ(5) + 9/22 ζ(4)2 − 6/11 ζ(4) ζ(3) −
3/11 ζ(4)−2/11 ζ(3)2 −2/11 ζ(3)−1/11)+ ε(−4)(18/11 ζ(7)−10/11 ζ(6)−6/11 ζ(5)+6/11 ζ(4) ζ(3)−3/11 ζ(4)−2/11 ζ(3)2 −
2/11 ζ(3) − 1/11) + ε(−5)(10/11 ζ(6) − 6/11 ζ(5) − 3/11 ζ(4) + 2/11 ζ(3)2 − 2/11 ζ(3) − 1/11) + ε(−6)(6/11 ζ(5) − 3/11 ζ(4) −
2/11 ζ(3) − 1/11) + ε(−7)(3/11 ζ(4) − 2/11 ζ(3) − 1/11) + ε(−8)(2/11 ζ(3) − 1/11) − 1/11 ε(−9) − 1/11 ε(−10) + 1/11 ε(−11)

−G(0, 0)[Z [1]]3〉, (32)

〈Γ (3, 0)〉 = 〈G(0, 0)3 G(3, 0) − 3G(0, 0)2 G(2, 0)Z [1]

+3G(0, 0) G(1, 0)[Z [1]]2 − G(0, 0)[Z [1]]3〉 , (33)

where we used G(1, 0) = G(0, 1). In both equations, the
first term on the rhs is the bare Green function and the
other terms renormalize the subdivergences.

As in [1], we now encode the momentum flow of the di-
agrams into link diagrams, associated to the Feynman di-
agrams. In this transition, the underlying one-loop vertex-
function is simply represented by a circle, and all informa-
tion as to where external particles couple is lost. Thus, the
observed symmetry is obvious, as we clearly see in Fig. 3.

In fact, we can also prove this symmetry from basic
properties of our Green functions. We will modify the
propagator ∆F in a way which will not change its high
energy behaviour. We use3

∆
[1,r]
F (k) = ∆

[1,r−j]
F (k) (−ik2) ∆

[1,j]
F (k), ∀j (34)

and define

∇[r,j]
F (k, q) = ∆

[1,r]
F (k+q)−∆

[1,r−j]
F (k+q) (−ik2) ∆

[1,j]
F (k),

(35)
where q is the external momentum. For large k � q the
two terms on the rhs have a similar behaviour. Thus, ∇F

3 And a similar relation for SF , if necessary
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has an improved powercounting, and renders the overall
logarithmic divergence in Γ̄ (n, m) finite, when inserted for
∆F . Consequently, we can replace ∆

[r]
F (k+q) by ∆

[r−j]
F (k+

q) k2 ∆
[j]
F (k) for any j, which gives the observed symme-

try.
Next, let us see if we can understand the various tran-

scendentals appearing in the counterterms. First, we note
that Γ̄ (3) is the first case which delivers a new topology
different from the ladder topology. It is reasonable to ex-
pect that this change in topology is reflected in the overall
divergence 〈Γ̄ (3)〉. And indeed, we find that 〈Γ̄ (3)〉 con-
tains ζ(3), and thus should be related to the trefoil knot
[3].

There are two possible approaches to assign knots to
Feynman diagrams. Either, one maps the possible momen-
tum routings in Feynman diagrams to link diagrams [1] or
one investigates the Gauss code of the Feynman diagram
under consideration [7]. Both approaches are intuitive and
serve the purpose to demonstrate the connection between
the transcendental numbers obtained from the Feynman
diagrams under consideration and low-dimensional topol-
ogy. Defining these mappings rigorously is beyond the
scope of this paper. A more detailled discussion will be
in a forthcoming book [18]. For our present purposes we
are contend to reproduce the pattern which we observe in
Table 1.

Essentially, we want to reproduce the fact that Γ̄ (2n+
1) delivers the (2, 2n + 1) torus knot (corresponding to
the appearance of ζ(2n + 1) in Table 1) for n ≥ 1, and
explain why Γ̄ (2n) only contains ζ(2n − 1) and relates to
the (2, 2n − 1) torus knots, n ≥ 2.

Let us use a method inspired by Gauss codes [7,17]. In
Fig. 5 we indicate how to obtain the codes {1, 1, 2, 2, . . . ,
n, n} and {1, 2, 2, . . . , n, n, 1} for Γ̄ (n). These are the two
distinguished possibilities, referring to the fact that we
can either start reading the code between two self-energy
insertions, or inside such a bubble. Further, whenever we
go through the graph we have two possibilities when we
come through a subdivergence, passing along one of its
two propagators.

Let us make such a choice for each one-loop insertion in
a string of r subdivergence and let us map this to a curve
with r curls as indicated in Fig. 5, for each such choice.
Figure 5 gives the example of three one-loop insertions,
and an arbitrarily chosen paths through them is indicated.
For the string {1, 1, . . . , n, n} we simply close the curves
at both ends, marked as a and b in the figure. Running
through this curve reproduces the same code as obtained
from the diagram. The curve is a circle with some curl in
it, but unknotted, for all n. We thus expect to see rational
numbers in the results for Γ̄ (n) for all n.

Next consider the string {1, 2, 2, . . . , n, n, 1}. We know
already how to map the substring 2, 2, . . . , n, n to a piece
of a curve (this is similar to the previous case), but we
now simply define the mapping of {1, 2, 2, . . . , n, n, 1} to
a closed curve as indicated at the bottom of Fig. 5. We
effectively double the strand which runs from a to b on
the side which has lesser curl and close the curve by once
more identifying the points a and b, and the point marked

1          1             2        2                3         3

1          1             2        2                3         3

1

1

2

2

3

3

1

a                                                                                       b

a                                                                                        b

a                                                                                  b

a                                                                                     b
x                                                                                       x

Fig. 5. The first line gives a string with three subdivergences.
Running through the graph produces a code. This code is ob-
tained from the curve below when we run from a to b. There
are two principal choices how to run through a one-loop sub-
divergences, which results in curl on different sides. When we
start running in the middle of a subdivergence (third line) we
will assign to this a curve which has a doubled strand (fourth
line). We double on the side where we have lesser curl, to mini-
mize the number of extra crossings. In the example considered
here this is irrelevant as we have one curl on each side. The
resulting knot is always a (2, q) torus knot which matches the
transcendentals in Table 1

x. Each self-energy which is met by the doubled strand
produces two extra crossings. Still, passing along the curve
and notating the number of each crossing in the order of
appearance reproduces the code. This way of doubling a
strand is known as a cabling operation in knot theory. This
is in accord with an analysis using momentum routings,
and with the experience gained in [1].

Let us count. We need at least three subdivergences for
the first knot to appear, and only addition of two further
subdivergences through which we pass in different manner
will generate a knot with two more crossings. The two
more subdivergences are needed because we double the
strand at the side with lesser curl. So we need to generate
more curl on each side to increase the number of crossings
in the knot. This is in accordance with the transcendentals
found in Γ̄ (n) for all n. In this manner, by distributing
the amount of curl on both sides in all posible ways, one
generates all transcendentals observed in Table 1.

Products of ζ’s can be obtained by lifting the fac-
torization properties of the propagator (34) to knot di-
agrams, which produces the factor knots corresponding
to the products of lower lying transcendentals in Table 1.
These expectations are indeed confirmed by explicit cal-
culations, Γ (5) in Table 1 provides an example for the
appearance of ζ(5) and ζ(3) in a six-loop example, Γ (7)
provides ζ(7), ζ(5) and ζ(3) and Γ (10) provides ζ(9), ζ(7),
ζ(5) and ζ(3), as well as the expected products of ζ’s and
rational contributions. There are hints that the presence of
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SF
(1,i)SF
(1,i)

SF
(1,n)SF
(1,n)

∆F
(1,j)∆F
(1,j) ∆F

(1,m)∆F
(1,m)

Fig. 6. Γ̄ (i, j, m, n)

even ζ’s (ζ(2n), n > 1, ∼ π2n) is related to the differences
in writhe between the different strands which participate
in the cabling operation. This is currently under investi-
gation.

4 Continuation to a dressed two-loop graph

Our generic topology is indicated in Fig. 6, which we
notate by Γ (i, j, m, n) for a two loop ladder graph with
(i + j + m + n) one-loop subdivergences at the indicated
places. It is defined by the following expression (this time
we omit to mention the case without renormalized subdi-
vergences at all – we know already that all the nice proper-
ties will only turn up after renormalization of subgraphs).

Γ̄ (i, j, n, m)(q)

:=
∫

dDkΓ̄ (i, j)(k)
1
k/

SF
[1,n](k)∆F

[1,m](k + q) . (36)

In Table 2 we collect results. We spot some remarkable
properties which, again, are visible only after elimination
of subdivergences.

The case 〈Γ (2, 0, 0, 0)〉 delivers the same value as 〈Γ (0,
2, 0, 0)〉. It contains ζ(3). The symmetry is obvious when
studying the analytic expressions for the two cases, from
the fact that G(i1, i2) = G(i2, i1). As link diagrams, it is
obvious that any link diagram for Γ (2, 0, 0, 0) is a link di-
agram for Γ (0, 2, 0, 0) as well. Forgetting the points where
external particles couple, the diagrams are topologically
equivalent. In contrast, 〈Γ (1, 1, 0, 0)〉 is free of ζ(3). This
is clear from the fact that it is topologically equivalent to
a ladder diagram, see Fig. 7, while 〈Γ (2, 0, 0, 0)〉 is topo-
logically equivalent to 〈Γ (3)〉. Figure 7 demonstrates this
clearly. Now a Gauss code analysis for a n-loop ladder di-
agram reveals that all its Gauss codes are equivalent to
the code {1, 1, . . . , n, n}, which explains its rationality in
this language.

This points towards an even more striking fact hidden
in Table 2. While 〈Γ (2, 0, 0, 0)〉 = 〈Γ (0, 2, 0, 0)〉 contain
knotted -transcendental- and unknotted -rational- codes,
〈Γ (1, 1, 0, 0)〉 contains only the rational code. This is in
striking agreement with the fact that the rational contri-
bution for the (2, 0, 0, 0) and (0, 2, 0, 0) cases is the same
as the (1, 1, 0, 0) contribution, cf. Table 2.

To test these phenomena, we calculated further exam-
ples. Some of them are collected in Table 2. By inspection,

1

1
2

3

3

2

1

1
2 2 3

3

Fig. 7. 〈Γ̄ (1, 1, 0, 0)〉, 〈Γ̄ (2, 0, 0, 0)〉 and their topologies and
codes drawn below. Γ̄ (1, 1, 0, 0) reproduces the ladder topology
{1, 2, 3, 3, 2, 1} and Γ̄ (2, 0, 0, 0) reproduces the same topology
as Γ̄ (3): {1, 1, 2, 2, 3, 3}

we indeed see that the rational parts of
{Γ (2, 0, 1, 1), Γ (1, 1, 1, 1)},
{Γ (2, 0, 0, 2), Γ (1, 1, 0, 2)},
{Γ (3, 0, 0, 0), Γ (2, 1, 0, 0)},
{Γ (3, 0, 0, 1), Γ (2, 1, 0, 1)},
{Γ (4, 0, 0, 0), Γ (3, 1, 0, 0)},
{Γ (4, 0, 0, 1), Γ (3, 1, 0, 1)}
are indeed identical, in perfect agreement with the analy-
sis of Gauss codes or link diagrams.4 Again, Table 2 ex-
hibits typical examples, while the reported phenomenon
was confirmed systematically to higher orders with results
which are too long to be reproduced here.

This indicates new relations between Feynman dia-
grams, not used and explored so far. Note that these rela-
tions are hidden in various ways. First of all, trivial pref-
actors resulting from various spin factors of the particles
hide these relations. For this reason we normalized our
graphs omitting the factors in (12,13), as mentioned be-
fore. These factors seem to play the same role as group
theoretic factors in Chern Simons theory, if one likes this
analogy, while the knottishness - the topology- is in the
transcendentals.

Second, such relations are impossible to observe as long
as one does not restrict oneself to the consideration of
overall divergences, the leading symbol of the graph, so to
speak, by elimination of subdivergences. Again, all sym-
metries and number theoretic properties are only apparent
after proper subtraction of subdivergences, emphasizing
the importance of studying proper overall divergences, to
see the connection with link theory.

4 We also have the symmetry (i, j, m, n) = (i, j, m′, n′), m +
n = m′ + n′, which one can observe in Table 2. It is similar to
the symmetries of Γ̄ (n)
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Table 2. 〈Γ (i, j, m, n)〉

Γ (2, 0, 0, 0) := ε(−1)(1/2 ζ(3) − 5/12) − 1/12 ε(−2) + 1/4 ε(−3) − 1/12 ε(−4)

Γ (1, 1, 0, 0) := −5/12 ε(−1) − 1/12 ε(−2) + 1/4 ε(−3) − 1/12 ε(−4)

Γ (0, 2, 0, 0) := ε(−1)(1/2 ζ(3) − 5/12) − 1/12 ε(−2) + 1/4 ε(−3) − 1/12 ε(−4)

Γ (2, 0, 0, 1) := ε(−1)(−3/20 ζ(4) − 1/10 ζ(3)) + ε(−2)(−1/10 ζ(3) + 19/60) − 11/60 ε(−4) + 1/15 ε(−5)

Γ (1, 1, 0, 1) := 19/60 ε(−2) − 11/60 ε(−4) + 1/15 ε(−5)

Γ (0, 2, 0, 1) := ε(−1)(−3/20 ζ(4) − 1/10 ζ(3)) + ε(−2)(−1/10 ζ(3) + 19/60) − 11/60 ε(−4) + 1/15 ε(−5)

Γ (2, 0, 0, 2) := ε(−1)(3/10 ζ(4)−1/5 ζ(3)+11/30)+ ε(−2)(1/5 ζ(3)−7/45)−19/90 ε(−3) +1/45 ε(−4) +13/90 ε(−5) −1/18 ε(−6)

Γ (1, 1, 0, 2) := ε(−1)(−7/30 ζ(5) + 1/4 ζ(4) − 11/30 ζ(3) + 11/30) + ε(−2)(−1/20 ζ(4) + 1/6 ζ(3) − 7/45) + ε(−3)(−1/30 ζ(3) −
19/90) + 1/45 ε(−4) + 13/90 ε(−5) − 1/18 ε(−6)

Γ (2, 0, 1, 1) := ε(−1)(3/10 ζ(4)−1/5 ζ(3)+11/30)+ ε(−2)(1/5 ζ(3)−7/45)−19/90 ε(−3) +1/45 ε(−4) +13/90 ε(−5) −1/18 ε(−6)

Γ (1, 1, 1, 1) := ε(−1)(−7/30 ζ(5) + 1/4 ζ(4) − 11/30 ζ(3) + 11/30) + ε(−2)(−1/20 ζ(4) + 1/6 ζ(3) − 7/45) + ε(−3)(−1/30 ζ(3) −
19/90) + 1/45 ε(−4) + 13/90 ε(−5) − 1/18 ε(−6)

Γ (3, 0, 0, 0) := ε(−1)(−3/5 ζ(4) + 1/5 ζ(3) + 3/10) + ε(−2)(1/10 ζ(3) + 1/20) + 1/20 ε(−3) − 3/20 ε(−4) + 1/20 ε(−5)

Γ (2, 1, 0, 0) := ε(−1)(−3/10 ζ(4) − 2/5 ζ(3) + 3/10) + ε(−2)(3/10 ζ(3) + 1/20) + 1/20 ε(−3) − 3/20 ε(−4) + 1/20 ε(−5)

Γ (4, 0, 0, 0) := ε(−1)( ζ(5) − 3/10 ζ(4) − 7/15 ζ(3) − 7/30) + ε(−2)(−1/10 ζ(4) + 1/5 ζ(3) − 1/30) + ε(−3)(−1/15 ζ(3) − 1/30) −
1/30 ε(−4) + 1/10 ε(−5) − 1/30 ε(−6)

Γ (3, 1, 0, 0) := ε(−1)(3/10 ζ(5) + 3/20 ζ(4) − 17/30 ζ(3) − 7/30) + ε(−2)(−1/4 ζ(4) + 1/2 ζ(3) − 1/30) + ε(−3)(−1/6 ζ(3) −
1/30) − 1/30 ε(−4) + 1/10 ε(−5) − 1/30 ε(−6)

Γ (3, 0, 0, 1) := ε(−1)(3/20 ζ(5) − 1/10 ζ(4) − 4/15 ζ(3) − 1/12) + ε(−2)(7/40 ζ(4) + 11/60 ζ(3) − 2/15) + ε(−3)(−2/15 ζ(3) −
1/12) − 1/120 ε(−4) + 7/60 ε(−5) − 1/24 ε(−6)

Γ (2, 1, 0, 1) := ε(−1)(7/20 ζ(5)+1/5 ζ(3)−1/12)+ ε(−2)(3/40 ζ(4)+1/4 ζ(3)−2/15)+ ε(−3)(−1/5 ζ(3)−1/12)−1/120 ε(−4) +
7/60 ε(−5) − 1/24 ε(−6)

Γ (4, 0, 0, 1) := ε(−1)(−2/7 ζ(6) − 3/35 ζ(5) + 17/70 ζ(4) − 6/35 ζ(3)2 − 1/105 ζ(3) + 1/105) + ε(−2)(−8/35 ζ(5) − 4/35 ζ(4) +
38/105 ζ(3)+16/105)+ ε(−3)(9/70 ζ(4)−29/105 ζ(3)+1/105)+ ε(−4)(3/35 ζ(3)+11/210)+1/105 ε(−5)−17/210 ε(−6)+1/35 ε(−7)

Γ (3, 1, 0, 1) := ε(−1)(−5/14 ζ(6)+39/70 ζ(5)−1/28 ζ(4)+29/70 ζ(3)2+67/210 ζ(3)+1/105)+ ε(−2)(−3/14 ζ(5)−31/140 ζ(4)+
37/210 ζ(3) + 16/105) + ε(−3)(27/140 ζ(4) − 73/210 ζ(3) + 1/105) + ε(−4)(9/70 ζ(3) + 11/210) + 1/105 ε(−5) − 17/210 ε(−6) +
1/35 ε(−7)

In the next section we mention two further examples,
as they are instructive for the reader.

5 Higher order dressing

We can generalize the examples of the previous section
when we increase the number of loops in the ladder, but
still have chains of one-loop subdivergences at internal
lines. A particularly interesting example is the function
Γn(1, 0), defined in Fig. 8. The figure also explains the
rationality of Γn(1, 0). We refer to the methods of [1,3] in

this case, as a Gauss code is not available.5 This rationality
agrees with its evaluation in terms of G-functions:

Γ 2(1, 0) = −1/3 ε(−1) − 5/24 ε(−2) + 1/3 ε(−3)

−1/8 ε(−4) , (37)

Γ 3(1, 0) = 4/15 ε(−1) + 13/30 ε(−2) − 17/240 ε(−3)

−43/240 ε(−4)+5/48 ε(−5)−1/48 ε(−6).(38)

5 This is due to the fact that there is no closed non-
selfintersecting curve which runs through all the vertices of
the diagram



D. Kreimer: On knots in subdivergent diagrams 765

Fig. 8. Γ n(1, 0). As a Gauss code is not available in this situa-
tion, we indicate the entanglement of a link diagram associated
to the graph. The link diagram is knot free

We omit to give results for higher loop orders, but again
calculations confirm rationality for all cases which have
been tested.6 The cancellation of transcendentals is highly
non-trivial, due to the presense of multiple counterterms
generated by the subdivergences.

Further, Fig. 9 considers dressings with two-loop rain-
bows, and shows the appearance of knots matching the
transcendentals in the overall divergence, given in Ta-
ble 3. Note that Γ2(2) does not provide any knot-number,
but delivers the transcendental ζ(4), indicating some extra
writhe in the diagrams. Further, an analysis with the help
of Gauss codes suggest that Γ2(2) should contain ζ(5),
while Γ2(3) and Γ2(4) should have ζ(7) and ζ(9), respec-
tively. Which is indeed the case.

6 Other field theories

One can extend the results considered here to other renor-
malizable theories. For clarity, we presented our examples
for the case of a massless Yukawa theory. To incorporate
other theories, one can resort to the matrix calculus pro-
posed in [1]. This becomes necessary due to the different
formfactors which are present in general, resulting from
all possible spin structures. One eventually ends up with
similar results. One should not forget that one has to nor-
malize Green functions in a manner similar to what we
did for Yukawa theory. Table 4 gives the results of Ta-
ble 1 for the QED case. Considering the vertex correction
at zmt, we are confronted with Γ

[1]
µ (i), which is defined

in the obvious manner. We then allow for a varying num-
ber of i1 one-loop subdivergences in the fermion line and
i2 subdivergences in the photon line, i = i1 + i2. A mo-
ment of thinking ensures that part of the problem reduces
to the concatenation of G-functions that we have already
considered for Yukawa theory. But QED is much more
demanding: inserting the kµkν part of the boson propa-
gator, one is also confronted with G functions which have

6 Usually, memory and CPU time restrictions allowed for
tests up to 10–20 loops

1

1
x                                                                                       x

1           3            3           5             5       1

2 4         4               6        6            2

a                                                                                  b

2 4

3

6

5

yy
a b

Fig. 9. One further cabling of the strand from a to b produces
a knot whose presence matches the transcendentals in Table 3,
here demonstrated for Γ̄2(3). The knot is obtained by the iden-
tifications at x, y and a with b, and turns out to be the (2, 5)
torus knot

intermediate IR divergences, as for example∫
dDk

1
[k2]2[(k + q)2]jε

. (39)

In Table 4 we only show the results for the part of the
vertex which was infected by such G-functions, and omit
the contributions which were similar to the Yukawa case
from the start. Again counterterms are subtracted in the
MS-scheme. We see that the same pattern arises as before.
No transcendentals up to three loops, and then ζ(3) plus
rational contributions at four loops.

Finally, let us comment on two results obtained by
other authors. In both cases, calculations were pushed to
the four-loop level, while investigating β-functions of some
sort.

First, the investigation of φ4 theory in [19] considers
the four-loop level. The four-loop result is in precise agree-
ment with our expectations. Again, ζ(3) appears at the
four-loop level, from diagrams where we expect it to oc-
cur. In fact, the circle chain integral (as the author calls
it) Icc

3 is topologically equivalent to our four-loop graph in
the first example, and thus we expect the author to find
a contribution containing ζ(3) as well as a rational part,
which is indeed the case.

Second, in [20], it is conjectured that the appearance of
ζ(3) at only three places out of twelve different topologies
(cf. Fig. 4) could be explained using knot theory. With the
experience from the results presented here, this is indeed
the case. The three cases (Fig. 4F,G,H) which deliver ζ(3)
in the results of [20] are again topologically equivalent to
the four-loop case in our first example, while all the other
diagrams only provide link diagrams free of knots, as they
should. In our notation, they all belong to cases similar to
Γn(1, 0).

7 Conclusions

In this paper we compared overall divergences of Feyn-
man graphs containing subdivergences with link diagrams.
Using recent results on a connection between knot the-
ory and renormalization theory, we explored the appear-
ance of transcendentals in the overall divergences. Our
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Table 3. Two-loop rainbow dressings

Γ2(1) := 2/3 ε(−1) − 1/2 ε(−2) + 1/6 ε(−3)

Γ2(2) := ε(−1)(1/80 ζ(4) + 4/15) − 2/15 ε(−2) + 17/60 ε(−3) − 1/5 ε(−4) + 1/20 ε(−5)

Γ2(3) := ε(−1)(−47/336 ζ(6) + 11/56 ζ(5) + 3/140 ζ(4) + 13/70 ζ(3)2 + 9/70 ζ(3) + 2/7) + ε(−2)(−11/280 ζ(5) − 3/28 ζ(4) +
1/70 ζ(3) + 1/35) + ε(−3)(3/140 ζ(4) − 1/14 ζ(3) + 1/14) + ε(−4)(1/70 ζ(3) − 39/280) + 47/280 ε(−5) − 5/56 ε(−6) + 1/56 ε(−7)

Γ 2(4) := ε(−1)(−575/1152 ζ(8)+167/168 ζ(7)−137/216 ζ(6)+18/35 ζ(5) ζ(3)+18/35 ζ(5)+13/140 ζ(4)2 −26/35 ζ(4) ζ(3)−
17/84 ζ(4) + 286/315 ζ(3)2 + 2/315 ζ(3) + 136/315) + ε(−2)(−167/1008 ζ(7) + 113/1008 ζ(6) − 6/35 ζ(5) + 13/105 ζ(4) ζ(3) −
19/210 ζ(4) − 26/105 ζ(3)2 − 17/126 ζ(3) + 4/45) + ε(−3)(−113/6048 ζ(6) + 2/15 ζ(4) + 13/315 ζ(3)2 − 19/315 ζ(3) + 2/63) +
ε(−4)(−1/14 ζ(4) + 4/45 ζ(3) − 1/63) + ε(−5)(1/84 ζ(4) − 1/21 ζ(3) + 377/5040) + ε(−6)(1/126 ζ(3) − 59/504) + 25/252 ε(−7) −
1/24 ε(−8) + 1/144 ε(−9)

Γ 2(5) := ε(−1)(−5199/3520 ζ(10) + 11333/3168 ζ(9) − 45701/12672 ζ(8) + 565/616 ζ(7) ζ(3) + 28505/11088 ζ(7) +
25/56 ζ(6) ζ(4) − 25/12 ζ(6) ζ(3) − 65/63 ζ(6) + 43/88 ζ(5)2 − 133/88 ζ(5) ζ(4) + 860/231 ζ(5) ζ(3) + 631/1848 ζ(5) +
53/77 ζ(4)2−135/616 ζ(4) ζ(3)2−1667/924 ζ(4) ζ(3)−47/168 ζ(4)+15/44 ζ(3)3+6617/5544 ζ(3)2−485/1386 ζ(3)+538/693)+
ε(−2)(−1619/3168 ζ(9)+2737/2816 ζ(8)−1835/1584 ζ(7)+25/84 ζ(6) ζ(3)+25/63 ζ(6)+19/88 ζ(5) ζ(4)−133/132 ζ(5) ζ(3)−
701/1848 ζ(5) − 69/352 ζ(4)2 + 212/231 ζ(4) ζ(3) + 15/1232 ζ(4) − 15/308 ζ(3)3 − 1667/2772 ζ(3)2 − 47/252 ζ(3) + 19/99) +
ε(−3)(−391/2816 ζ(8) + 305/1056 ζ(7) − 25/252 ζ(6) + 19/132 ζ(5) ζ(3) + 3/44 ζ(5) + 69/2464 ζ(4)2 − 23/88 ζ(4) ζ(3) +
185/3696 ζ(4) + 212/693 ζ(3)2 + 5/616 ζ(3) + 1/18) + ε(−4)(−305/7392 ζ(7) + 1/33 ζ(5) + 23/616 ζ(4) ζ(3) − 251/1848 ζ(4) −
23/264 ζ(3)2 + 185/5544 ζ(3) + 37/2772) + ε(−5)(−7/264 ζ(5) + 97/924 ζ(4) + 23/1848 ζ(3)2 − 251/2772 ζ(3) + 1/72) +
ε(−6)(1/264 ζ(5) − 7/176 ζ(4) + 97/1386 ζ(3) − 263/7392) + ε(−7)(1/176 ζ(4) − 7/264 ζ(3) + 1699/22176) + ε(−8)(1/264 ζ(3) −
139/1584) + 91/1584 ε(−9) − 7/352 ε(−10) + 1/352 ε(−11)

Table 4. Two- to five-loop QED examples

Γ QED(1) := 4 ε(−1) − 3 ε(−2)

Γ QED(2) := −4/3 ε(−1) − 8/3 ε(−2) + 2 ε(−3)

Γ QED(3) := ε(−1)(−3 ζ(3) + 1) + ε(−2) + 2 ε(−3) − 3/2 ε(−4)

Γ QED(4) := ε(−1)(18/5 ζ(4) − 16/5 ζ(3) − 4/5) + ε(−2)(12/5 ζ(3) − 4/5) − 4/5 ε(−3) − 8/5 ε(−4) + 6/5 ε(−5)

results indicate that also graphs which do contain subdi-
vergences can be investigated using link and knot theory.
This closes the before-mentioned gap between results con-
cerning topologically trivial ladder graphs and results con-
cerning graphs of complicated topology, but free of subdi-
vergences. In this paper we considered the middle ground
inbetween.

Specifically, we found that disjoint subdivergences of a
simple structure do provide transcendentals in accordance
with link diagrams assigned to them in the manner pro-
posed in [1,4,6,7]. In the most simple case, we dressed a
one-loop skeleton graph with chains of one-loop subdiver-
gences. Link diagrams for this case suggested the appear-
ance of all (2, q) torus knots, with the highest q determined
by the loop number. Table 1 summarizes these results.

Using only very basic properties of link diagrams, we
discovered a new relation between rational parts of over-
all counterterms, as it is dramatically exemplified in Ta-
ble 2. All the Feynman diagrams considered there contain
knot-free link diagrams, but some contain others link di-

agrams as well. We found that whenever a knot-free link
diagram results from various different diagrams, the ra-
tional part of their contribution to the overall divergence
is the same. This not only confirms that knots should be
associated with transcendentals, but establishes new re-
lations between diagrams. Apart from our approach via
link theory, there is no other explanation for such results
available. It indicates that the resolution of the topology
of a Feynman diagram in terms of different link diagrams
is a meaningful tool to understand the number-theoretic
properties of counterterms. The way we assign knots of
increasing complexity to these diagrams is by way of a
cabling operation, which indicates further systematics in
this approach which deserves further study.

These relations between diagrams were not found be-
fore, mainly, one guesses, because one barely calculates
overall divergent quantities by doing the renormalization
of subdivergences graph by graph. Multiplicative renor-
malization screens these new findings. Only when one re-
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normalizes graph by graph, one can observe these rela-
tions.

It seems that a reorganization of perturbative results
ordered with respect to transcendentals is favourable. Our
results indicate that the forest structure of a graph has a
deep connection to link theory, where the way how forests
are mutually disjoint or nested is reflected in the entan-
glement of link diagrams which one can assign to them.

Further results confirmed our expectations, and we
also gave some results for QED. We expect that the pat-
terns observed here are true for a renormalizable theory
in general.7

While already results for diagrams without subdiver-
gences deliver evidence towards a connection between the
theory of links and knots, number theory, and the prob-
lem of divergences in a pQFT, it is apparent that the full
richness of this new connection arises when one allows for
the general case. In this new area, much remains to be
done, and the results reported here are only the first few
steps towards an understanding of this connection. It still
seems that the role which UV divergences of a quantum
field theory play is not fully explored yet. Here is not the
space to muse about connections to recent developments
in mathematics, and we refer to [18] for such purposes.

In recent results, [9,10], results are obtained clarifying
the role of the four-term relation in counterterms free of
subdivergences. These results still suffer from an exclusion
of graphs with subdivergences. In the light of the results
here we hope to be able to report on some progress with
the four-term relation concerning graphs with subdiver-
gences soon.
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